Wave-equation migration with dithered plane waves
نویسندگان
چکیده
Wave-equation based shot-record migration provides accurate images but is computationally expensive because every shot must be migrated separately. Shot-encoding migration, such as random shot-encoding or plane-wave migration, aims to reduce the computational cost of the imaging process by combining the original data into synthesized common-source gathers. Random shot-encoding migration and planewave migration have different and complementary features: the first recovers the full spatial bandwidth of the image but introduces strong artefacts, which are due to the interference between the different shot wavefields; the second provides an image with limited spatial detail but is free of crosstalk noise. We design a hybrid scheme that combines linear and random shot-encoding in order to limit the drawbacks and merge the advantages of these two techniques. We advocate mixed shot-encoding migration through dithering of plane waves. This approach reduces the crosstalk noise relative to random shot-encoding migration and increases the spatial bandwidth relative to conventional plane-wave migration when the take-off angle is limited to reduce the duration of the plane-wave gather. In turn, this decreases the migration cost. Migration with dithered plane waves operates as a hybrid encoding scheme in-between the end members represented by plane-wave migration and random shot-encoding. Migration with dithered plane waves has several advantages: every synthesized common-source gather images in a larger aperture, the crosstalk noise is limited and higher spatial resolution is achievable compared to shot-record migration, random shot-encoding and linear shot-encoding, respectively. Computational cost is also reduced relative to both random and linear shot-encoding migration since fewer synthesized commonsource gathers are necessary to obtain a high signal-to-noise ratio and high spatial resolution in the final image.
منابع مشابه
Offset plane waves vs. common-azimuth migration for sub-salt imaging
Offset plane wave migration and common-azimuth migration are among the most promising wave-equation migration methods for efficiently imaging 3-D marine data sets. Offset plane wave migration has some computational advantages over common-azimuth migration, but common-azimuth is more accurate. Sub-salt images produced by commonazimuth migration are better focused than the corresponding images pr...
متن کاملReflection of Plane Wave at Traction-Free Surface of a Pre-Stressed Functionally Graded Piezoelectric Material (FGPM) Half-Space
This paper is devoted to study a problem of plane waves reflection at a traction-free surface of a pre-stressed functionally graded piezoelectric material (FGPM). The effects of initial stress and material gradient on the reflection of plane waves are studied in this paper. Secular equation has been derived analytically for the pre-stressed FGPM half-space and used to show the existence of two ...
متن کاملTHE EFFECT OF PURE SHEAR ON THE REFLECTION OF PLANE WAVES AT THE BOUNDARY OF AN ELASTIC HALF-SPACE
This paper is concerned with the effect of pure shear on the reflection from a plane boundary of infinitesimal plane waves propagating in a half-space of incompressible isotropic elastic material. For a special class of constitutive laws it is shown that an incident plane harmonic wave propagating in the considered plane gives rise to a surface wave in addition to a reflected wave (with angle o...
متن کاملAnalysis of Plane Waves in Anisotropic Magneto-Piezothermoelastic Diffusive Body with Fractional Order Derivative
In this paper the propagation of harmonic plane waves in a homogeneous anisotropic magneto-piezothermoelastic diffusive body with fractional order derivative is studied. The governing equations for a homogeneous transversely isotropic body in the context of the theory of thermoelasticity with diffusion given by Sherief et al. [1] are considered as a special case. It is found that three types of...
متن کاملWave Propagation and Fundamental Solution of Initially Stressed Thermoelastic Diffusion with Voids
The present article deals with the study of propagation of plane waves in isotropic generalized thermoelastic diffusion with voids under initial stress. It is found that, for two dimensional model of isotropic generalized thermoelastic diffusion with voids under initial stress, there exists four coupled waves namely, P wave, Mass Diffusion (MD) wave, thermal (T) wave and Volume Fraction (VF) wa...
متن کامل